

INTELLIGENT SYSTEMS (CSE-303-F)

Section C

Partial Order Planning

Outline

• Partial Order Planning
Execution and Conditional Planning

• * AIMA = “Artificial Intelligence: A Modern Approach,”
by Russell and Norvig.

• Optional Reading:
Weld “Introduction to Least Commitment Planning,” AI
Magazine.
(To be posted on the class web site)

Planning with Atomic Time

• Operator-based planning as search

• Declarative encoding of states and operators

• Partial order planning

– Planning problem

– Partial order planning algorithm

Operator-based Planning Problem

• Input

– Set of world states

– Action operators

• Fn: world-stateworld-state

– Initial state of world

– Goal

• partial state
(set of world states)

• Output

– Sequence of actions

What assumptions are

implied?

• Atomic time.

• Agent is omniscient

(no sensing necessary).

• Agent is sole cause of

change.

• Actions have

deterministic effects.

• No indirect effects.

 STRIPS Assumptions

a

a
a

north11 north12

W0 W2 W1

Operator-based Planning as Search

A
C

B

Initial

State

C
B
A

Goal

State

 1) Forward-Chaining State-Space Search

 What problems arise?

What Are Alternative Strategies?

A
C

B

Initial

State

C
B
A

Goal

State

 Need more declarative description of operators and state

 Are these strategies supported by our current representation?

Planning as Search
 2) Backward-Chaining (goal-directed search)

Many Goal States

Where do we start?

Initial State is

completely

defined

A

C

B

D

E

D C
B
A

E

D

C
B
A

E

C
B

A

E

* * *

D

•Search partial worlds

 (partial assignment)

Subgoals weakly interact:

• Maintain goal/subgoal

 decomposition

• Order action sequences

 only where needed

 (partial orders)

How do we represent

 the search state?

Plan-Space Search

• How do we represent plans?

• How do we test if a plan is a solution?

• How do we generate a plan?

pick-from-table(C)

pick-from-table(B)

pick-from-table(C)

put-on(C,B)

Idea: Each state is a partial plan

Partial Order Planning

• Plan from goals, back to initial state

• Search through partial plans

• Representation:

– Operators given in declarative representation, rather

than black box functions.

– Plans represent only relevant commitments

(e.g., relevant ordering of operators, not total ordering)

Planning with Atomic Time

• Operator-based planning as search

• Declarative encoding of state and operators

• Partial order planning

– Planning problem

– Partial order planning algorithm

STRIPS Representation: Encode world

states as conjunctions of literals

a
a

north11

W0 W1

• Propositions
• True/False Statements

 (block a)

• Literals
• Proposition or its negation

(not (block a))

• Conjunction
• And of literals

• (And (block a) (block b)
 (block c) (on-table a) …)

• A World state is a
conjunction with every
proposition appearing exactly
once.

• A Partial state is a
conjunction with every
proposition appearing at most
once.

What is missing from this logic?

STRIPS Operator Representation

• Effects specify how to

change the set of propositions.

a
a

north11

W0 W1

• Initial state:
• ((block a) (block b)

 (block c) (on-table
a)
 (on-table b) (clear
a)
 (clear b) (clear c)
 (arm-empty))

• goal (partial state):
• ((on a b)

 (on b c)))

• Available actions
• Strips operators

precond: (and (agent-at 1 1)

 (agent-facing north))

effect: (and (agent-at 1 2)

 (not (agent-at 1 1)))

North11

(Parameterized) Operator Schemata

 (:operator pick-up

 :parameters ((block ?ob1))

 :precondition (and (clear ?ob1)

 (on-table ?ob1)

 (arm-empty))

 :effect (and (not (clear ?ob1))

 (not (on-table ?ob1))

 (not (arm-empty))

 (holding ?ob1)))

• Instead of defining:

pickup-A and pickup-B and …

• Define a schema:

}

?var denotes a free variable

Planning with Atomic Time

• Operator-based planning as search

• Declarative encoding of state and operators

• Partial order planning

– Planning problem

– Partial order planning algorithm

Given Initial and Goal State

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

Start

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Initial and Goal states are encoded as operators, Why?

Don’t need to introduce (partial) states

as separate objects.

Keeps theory minimal.

Given Plan Operators

Go(HWS)

Go(Home)

Buy(Drill)

Buy(Milk)

Buy(Ban.) Go(SM)

At(SM), Sells(SM,Milk) At(SM)

At(SM), Sells(SM,Ban.)

At(Home)

At(HWS)

At(HWS) Sells(HWS,Drill)

Have(Milk)

Have(Drill)

Have(Ban)

At(Home)

At(HWS)

At(SM)

What is a solution?

Start

Finish

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Milk)

At(SM), Sells(SM,Milk)

Buy(Ban.)

At(SM), Sells(SM,Ban.)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Partial Order Plan <Actions,Orderings,Links>

Start

Finish

Buy(Drill)

Buy(Milk) Buy(Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Partial Order Plan <Actions,Orderings,Links>

Start

Finish

Buy(Drill)

Buy(Milk) Buy(Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(HWS) Sells(HWS,Drill)

Go(Home)

At(HWS)

Go(SM)

At(SM)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Partial Order Plan <Actions,Orderings,Links>

Start

Go(Home)

Finish

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(SM)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

At(SM), Sells(SM,Milk)

At(SM)

At(SM), Sells(SM,Ban.)

At(HWS)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Go(HWS)
At(Home)

Partial Order Plan <Actions,Orderings,Links>

Start

Go(HWS)

Go(Home)

Finish

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(SM)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

At(SM), Sells(SM,Milk)

At(SM)

At(SM), Sells(SM,Ban.)

At(Home)

At(HWS)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Partial Order Plan <Actions,Orderings,Links>

Why is an ordering needed?

Go(Home)

Buy(Milk)

Go(SM)

At(Home)

At(SM)

At(SM)

At(HWS)

Why is an ordering needed?

Go(Home)

Go(SM)

At(Home)

At(SM)

At(HWS)

Buy(Milk)
At(SM)

Suppose the other order is allowed,

what happens?

“Threatened

 Precondition”

Why is an ordering needed?

Go(Home)

Go(SM)

At(Home)

At(SM)

At(HWS)

Buy(Milk)
At(SM)

Suppose the other order is allowed,

what happens?

Link indicates

protected time

interval.

Ordering Resolves Threat

Go(Home)

Buy(Milk)

Go(SM)

At(Home)

At(SM)

At(SM)

At(HWS)

A Solution: Complete and Consistent Plan

• Complete Plan

• Consistent Plan

IFF every precondition of

every step is achieved

A step’s precondition is achieved iff

• its the effect of a preceding step,

• no possibly intervening step

 undoes it.

IFF there is no contradiction

in the ordering constraints

(I.e., never si < sj and sj < si.)

Start

Go(HWS)

Go(Home)

Finish

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(SM)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

At(SM), Sells(SM,Milk)

At(SM)

At(SM), Sells(SM,Ban.)

At(Home)

At(HWS)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Planning with Atomic Time

• Operator-based planning as search

• Declarative encoding of state and operators

• Partial order planning

– Planning problem

– Partial order planning algorithm

POP(<A,O,L>, agenda, actions)

• <A,O,L>, A partial plan to expand

• Agenda: A queue of open conditions still to
be satisfied: <p, aneed >

• Actions: A set of actions that may be
introduced to meet needs.

• aadd: an action that produces the needed
condition p for aneed

• Athreat : an action that might threaten a
causal link from aproducer to aconsumer

POP(<A,O,L>, agenda, actions)

1. Termination: If agenda is empty, return plan <A,O,L>.

2. Goal Selection: select and remove open condition <p, aneed > from

agenda.

3. Action Selection: Choose new or existing action aadd that can

precede aneed and whose effects include p.

Link and order actions.

4. Update Agenda: If aadd is new, add its preconditions to agenda.

5. Threat Detection: For every action athreat that might threaten some

causal link from aproduce to aconsume, choose a consistent ordering:

a) Demotion: Add athreat < aproduce

b) Promotion: Add aconsume < athreat

6. Recurse: on modified plan and agenda

Choose is nondeterministic Select is deterministic

To remove threats…

Go(Home)

Go(SM)

At(Home)

At(SM)

At(HWS)

Buy(Milk)
At(SM)

promote the threat…

To remove threats…

Go(Home)

Go(SM)

At(Home)

At(SM)

At(HWS)

Buy(Milk)
At(SM)

promote the threat… demote the threat…

Go(SM)
At(HWS)

• But only allow demotion/promotion

 if schedulable

• consistent = loop free

• no action precedes initial state

To remove threats…

promote the threat… demote the threat…

Buy(Milk)
At(SM)

Buy(Milk)
At(SM)

Go(Home)

At(Home)

At(SM)

Start

Finish

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Start

Finish

Have(Drill) Have(Milk) Have(Ban.) at(Home)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Ban.)

At(SM), Sells(SM,Ban.)

Buy(Milk)

At(SM), Sells(SM,Milk)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Start

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.) At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Start

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.) At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Go(HWS)

At(x) Go(SM)

At(x)

Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(Home)

Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(Home)

Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(Home)

Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(x)

Go(Home)
At(SM)

Start

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.) At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Go(HWS)

At(x) Go(SM)

At(x)

Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(Home)

Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(Home)

Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(x)

Go(Home)
At(SM)

Monitors

Autonomous Agents: What is missing?

Command dispatch

Fault protection

Attitude control

Mission Goal Scenario

Self-commanding

Self-diagnosing

Self-repairing

RECOVERY

Many Action Representations:

(Many Studied In This Course)
T

ra
ct

ab
le

E
x
p
re

ss
iv

e

STRIPS

MDPs

POMDPs

Situation

Calculus

SADL

ADL,

UWL

Probabilistic

Concurrent

Constraint

Automata

Hierarchical

Hybrid

Constraint

Automata

DS1 DDL

TPNs

